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Structural Analysis III 

1. Introduction 

1.1 Background 

Up to now we have concentrated on the elastic analysis of structures. In these 

analyses we used superposition often, knowing that for a linearly elastic structure it 

was valid. However, an elastic analysis does not give information about the loads that 

will actually collapse a structure. An indeterminate structure may sustain loads 

greater than the load that first causes a yield to occur at any point in the structure. In 

fact, a structure will stand as long as it is able to find redundancies to yield. It is only 

when a structure has exhausted all of its redundancies will extra load causes it to fail. 

Plastic analysis is the method through which the actual failure load of a structure is 

calculated, and as will be seen, this failure load can be significantly greater than the 

elastic load capacity. 

 

To summarize this, Prof. Sean de Courcy (UCD) used to say: 

 

“a structure only collapses when it has exhausted all means of standing”. 

 

Before analysing complete structures, we review material and cross section behaviour 

beyond the elastic limit. 
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2. Development 

2.1 Material Behaviour 

A uniaxial tensile stress on a ductile material such as mild steel typically provides the 

following graph of stress versus strain: 

 

 
 

As can be seen, the material can sustain strains far in excess of the strain at which 

yield occurs before failure. This property of the material is called its ductility. 

 

Though complex models do exist to accurately reflect the above real behaviour of the 

material, the most common, and simplest, model is the idealised stress-strain curve. 

This is the curve for an ideal elastic-plastic material (which doesn’t exist), and the 

graph is: 

 

 

 

Dr. C. Caprani 5



Structural Analysis III 

 
 

As can be seen, once the yield has been reached it is taken that an indefinite amount 

of strain can occur. Since so much post-yield strain is modelled, the actual material 

(or cross section) must also be capable of allowing such strains. That is, it must be 

sufficiently ductile for the idealised stress-strain curve to be valid. 

 

Next we consider the behaviour of a cross section of an ideal elastic-plastic material 

subject to bending. In doing so, we seek the relationship between applied moment 

and the rotation (or more accurately, the curvature) of a cross section. 
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2.2 Cross Section Behaviour 

Moment-Rotation Characteristics of General Cross Section 

We consider an arbitrary cross-section with a vertical plane of symmetry, which is 

also the plane of loading. We consider the cross section subject to an increasing 

bending moment, and assess the stresses at each stage. 

 

 
Cross-Section and Stresses 

 

 
Moment-Rotation Curve 
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Stage 1 – Elastic Behaviour 

tresses over the cross-section that are all less than the 

tage 2 – Yield Moment 

t sufficient that the yield stress of the material is reached at 

The applied moment causes s

yield stress of the material.  

 

S

The applied moment is jus

the outermost fibre(s) of the cross-section. All other stresses in the cross section are 

less than the yield stress. This is limit of applicability of an elastic analysis and of 

elastic design. Since all fibres are elastic, the ratio of the depth of the elastic to plastic 

regions, 1.0α = . 

 

Stage 3 – Elasto-Plastic Bending 

s section has been increased beyond the yield The moment applied to the cros

moment. Since by the idealised stress-strain curve the material cannot sustain a stress 

greater than yield stress, the fibres at the yield stress have progressed inwards 

towards the centre of the beam. Thus over the cross section there is an elastic core 

and a plastic region.  The ratio of the depth of the elastic core to the plastic region is 

1.0 0α< < . Since extra moment is being applied and no stress is bigger than the yield 

a rotation of the section occurs: the moment-rotation curve losses its 

linearity and curves, giving more rotation per unit moment (i.e. looses stiffness). 

 

stress, extr

tage 4 – Plastic Bending 

cross section is such that all fibres in the cross section are 

S

The applied moment to the 

at yield stress. This is termed the Plastic Moment Capacity of the section since there 

are no fibres at an elastic stress, 0α = . Also note that the full plastic moment requires 

an infinite strain at the neutral axi d so is physically impossible to achieve. 

However, it is closely approximated in practice. Any attempt at increasing the 

moment at this point simply results in more rotation, once the cross-section has 

s an
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sufficient ductility. Therefore in steel members the cross section classification must 

be plastic and in concrete members the section must be under-reinforced. 

 

Stage 5 – Strain Hardening 

Due to strain hardening of the material, a small amount of extra moment can be 

sustained. 

 

The above moment-rotation curve represents the behaviour of a cross section of a 

regular elastic-plastic material. However, it is usually further simplified as follows: 

 

 
 

With this idealised moment-rotation curve, the cross section linearly sustains moment 

up to the plastic moment capacity of the section and then yields in rotation an 

indeterminate amount. Again, to use this idealisation, the actual section must be 

capable of sustaining large rotations – that is it must be ductile. 
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Plastic Hinge 

Note that once the plastic moment capacity is reached, the section can rotate freely – 

that is, it behaves like a hinge, except with moment of PM  at the hinge. This is 

termed a plastic hinge, and is the basis for plastic analysis. At the plastic hinge 

stresses remain constant, but strains and hence rotations can increase. 
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Analysis of Rectangular Cross Section 

Since we now know that a cross section can sustain more load than just the yield 

moment, we are interested in how much more. In other words we want to find the 

yield moment and plastic moment, and we do so for a rectangular section. Taking the 

stress diagrams from those of the moment-rotation curve examined previously, we 

have: 

 

 
 

Elastic Moment 

From the diagram: 

 

 2
3YM C d= ×  

 

But, the force (or the volume of the stress block) is: 

 

 1
2 2Y

dC T bσ= =  

 

Hence: 
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2

1 2
2 2 3

6

Y Y

Y

Y

dM b d

bd

Z

σ

σ

σ

⎛ ⎞⎛= ⎜ ⎟⎜
⎝ ⎠⎝

= ⋅

= ⋅

⎞
⎟
⎠

 

 

The term 2 6bd  is thus a property of the cross section called the elastic section 

modulus and it is termed Z. 

 

Elasto-Plastic Moment 

The moment in the section is made up of plastic and elastic components: 

 

 ' '
EP E PM M M= +  

 

The elastic component is the same as previous, but for the reduced depth, dα  instead 

of the overall depth, d: 

 

 

'

2
2

1 2
2 2 3

6

E Y

Y

d dM

bd

α ασ

σ α

⎛ ⎞⎛= ⎜ ⎟⎜
⎝ ⎠⎝

= ⋅ ⋅

⎞
⎟
⎠  

 

The plastic component is: 

 

 '
P PM C s= ⋅  

 

The lever arm, s, is: 

 

 ps d hα= +  
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But  

 

( )1
2 2p

d d dh α α−
= = −  

 

Thus, 

 

 
( )

2 2

1
2

d ds d

d

αα

α

= + −

= +
 

 

The force is: 

 

 
( )1

2

P Y p

Y

C h b
db

σ

σ α

=

= −
 

 

Hence, 

 

 
( ) ( )

( )

'

2
2

1 1
2 2

1
4

P Y

Y

d dM b

bd

σ α α

σ α

⎡ ⎤ ⎡= − ⋅ +⎢ ⎥ ⎢⎣ ⎦ ⎣

= −

⎤
⎥⎦  

 

And so the total elasto-plastic moment is: 

 

 
( )

( )

2 2
2 2

22

1
6 4
3

6 2

EP Y Y

Y

bd bdM

bd

σ α σ

α
σ

= ⋅ ⋅ + −

−
= ⋅

α
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Plastic Moment 

From the stress diagram: 

 

 
2P

dM C= ×  

 

And the force is: 

 

 
2Y

dC T bσ= =  

 

Hence: 

 

 
2

2 2

4

P Y

Y

Y

bd dM

bd

S

σ

σ

σ

⎛ ⎞⎛= ⎜ ⎟⎜
⎝ ⎠⎝

= ⋅

= ⋅

⎞
⎟
⎠

 

 

The term 2 4bd  is a property of the cross section called the plastic section modulus, 

termed S. 
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Shape Factor 

Thus the ratio of elastic to plastic moment capacity is: 

 

 P Y

Y Y

M S S
M Z Z

σ
σ

⋅
= =

⋅
 

 

This ration is termed the shape factor, f, and is a property of a cross section alone. 

For a rectangular cross-section, we have: 

 

 
2

2

4 1.5
6

S bdf
Z bd

= = =  

 

And so a rectangular section can sustain 50% more moment than the yield moment, 

before a plastic hinge is formed. Therefore the shape factor is a good measure of the 

efficiency of a cross section in bending. Shape factors for some other cross sections 

are: 

 

Rectangle: 1.5f = , as above; 

 

 

Circle: 1.698f = ; 

 

 

Diamond: 2.0f = ; 

 

Steel I-beam: f is between 1.12 and 1.15. 
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2.3 Formation of Hinges for Collapse 

Simply-Supported Beam 

We investigate the collapse of a simply supported beam under central point load with 

the information we now have. 

 

 
 

The bending moment at the centre of the beam is given by: 

 

 
4C

PLM =  
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Therefore the load at which yield first occurs is: 

 

 4
4

Y
C Y

Y
Y

P LM M

MP
L

= =

∴ =
 

 

Collapse of this beam occurs when the plastic hinge forms at the centre of the beam, 

since the extra hinge turns the statically determinate beam into a mechanism. The 

collapse load occurs when the moment at the centre reaches the plastic moment 

capacity: 

 

 4
4

P
C P

P
P

P LM M

MP
L

= =

∴ =
 

 

The ratio collapse to yield load is: 

 

 4
4

P P P

Y Y

P M L M
P M L M

= =
Y

 

 

But since,  

 

P

Y

M S f
M Z

= =  

 

The ratio is just the shape factor of the section. This is a general result: the ratio of 

collapse load to first yield load is the shape factor of the member, for statically 

determinate prismatic structures. 
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Shape of the Plastic Hinge 

We are also interested in the plastic hinge, and the zone of elasto-plastic bending. As 

can be seen from the diagram, the plastic material zones extend from the centre out to 

the point where the moment equals the yield moment.  

 

Using similar triangles from the bending moment diagram at collapse, we see that: 

 

 
2

P P Y P E

p

PM M M M M
L l z

− −
= =  

 

In which EPM  is the elasto-plastic moment at a distance z from the plastic hinge, and 

where 
2
plz ≤ , where  is the total length of the plastic region. pl

 

Equating the first two equations gives: 

 

 ( ) 11 1Y
p P Y

P P

L Ml M M L L
M M f

⎛ ⎞ ⎛ ⎞
= − = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

And so for a beam with a rectangular cross section ( 1.5f = ) the plastic hinge extends 

for a length: 

 

 11
1.5 3p

Ll L⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 

 

Lastly, the shape of the hinge follows from the first and third equation: 
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 ( )
2

1
2

1 1
2

P P EP

P EP
P

EP

P

M M M
L z
z M M
L M

z M
L M

−
=

= −

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

 

 

From our expressions for the elasto-plastic and plastic moments, we have: 

 

 

( )( )( )
( )

( )

2 2

2

2

2

6 1 2 31 1
2 4

1 2 11 3
2 3 2

6

Y

Y

bdz
L bd

z
L

σ α
σ

α

α

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞= − ⋅ ⋅ −⎜ ⎟
⎝ ⎠

=

 

 

This shows that the plastic region has a parabolic profile, and confirms that the total 

length of the hinge, 2pl z= , is 3L  at the location where 1.0α = . 

 

Using a similar form of analysis, we can show that under a UDL the plastic hinge has 

a linear profile given by 2 3z L α=  and that its length is 3L . 

 

 

Dr. C. Caprani 19



Structural Analysis III 

2.4 Plastic Hinge Development 

Illustrative Example – Propped Cantilever 

We now assess the behaviour of a simple statically indeterminate structure under 

increasing load. We consider a propped cantilever with mid-span point load: 

 

 
 

From previous analyses we know that: 

 

 3 5
16 32A C

PL PLM M= =  

 

We will take the span to be  and the cross section to have the following 

capacities: 

1 mL =

 

  7.5 kNm 9.0 kNmY PM M= =

 

Further, we want this beam to be safe at a working load of 32 kN, so we start there. 
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Load of 32 kN 

At this value of load the BMD is as shown, with: 

 

 ( )( ) ( )( )3 32 1 5 32 1
6kNm 5 kNm

16 32A CM M= = = =  

 

Since the peak moments are less than the yield moments, we know that yield stress 

has not been reached at any point in the beam. Also, the maximum moment occurs at 

A and so this point will first reach the yield moment.  
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Load of 40 kN 

At this load the BDM becomes that as shown. The moment at A has now reached the 

yield moment and so the outer fibres at A are at yield stress. 
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Load of 48 kN 

The BMD is as shown. The moment at A is now 9 kNm – the plastic moment 

capacity of the section – and so the cross section at A has fully yielded. Thus a plastic 

hinge has formed at A and so no extra moment can be taken at A, but A can rotate 

freely with constant moment of 9 kNm. Also, the moment at C has reached the yield 

moment. Note that the structure does not collapse since there are not sufficient hinges 

for it to be a mechanism yet: it now acts like a simply-supported beam with a pin at A 

(the plastic hinge) and B (the pin support). 
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Load of 54 kN 

Since the moment at A has already reached the plastic moment of the section, no 

extra moment can be taken there and AM  must remain 9 kNm whilst allowing 

rotation to freely occur. Therefore, all of the extra moment caused by the increase in 

load of 54  must be taken by the structure as if it were a simply-supported 

beam. That is, a beam free to rotate at both ends. The extra moment at C is thus 

48 6 kN− =

4 6 1 4 1.5 kNmPL = ⋅ =  bring the total moment at C to 9 kNm – the plastic moment 

capacity of the section. Therefore a plastic hinge forms at C and the structure is not 

capable of sustaining anymore load – becomes a mechanism – and so collapse 

ensues. 

 

 

Dr. C. Caprani 24



Structural Analysis III 

Discussion 

There are several things to note from this analysis: 

1. The actual load carried by the beam is 54 kN, greater than the load at which 

yield first occurs, 40 kN, the elastic limit. This difference of 35% represents 

the extra capacity of the structure over the elastic capacity, so to ignore it 

would be very inefficient. 

2. At the end of the analysis 9 kNmA CM M= =  and so 1A CM M = . Since for an 

elastic analysis ( ) ( )3 16 5 32 1.2A CM M PL PL= = , it is evident that our 

analysis is not an elastic analysis and so is a plastic analysis. 

3. The height of the free bending moment diagram was 4PL  throughout, as 

required by equilibrium – only the height of the reactant bending moment 

diagram varied. 

4. At the point of collapse we had 4 reactions and 2 plastic hinges giving a statical 

indeterminacy of  which is a mechanism and so 

collapse occurs.  

3 4 2 3 1R C− − = − − = −

5. The load can only increase from 48 kN to 54 kN once the cross section at A has 

sufficient ductility to allow it rotate thereby allowing the extra load to be taken 

at C. If there was not sufficient ductility there may have a brittle-type 

catastrophic failure at A resulting in the beam failing by rotating about B before 

the full plastic capacity of the structure is realized. Therefore it is only by 

having sufficient ductility that a plastic analysis can be used. 

 

Some of these points are general for any plastic analysis and these generalities are 

known as the Theorems of Plastic Analysis. However, before looking at these 

theorems we need a simpler way of analysing for the collapse of structures: the 

incremental loading approach just used works, but is very laborious. 

 

Dr. C. Caprani 25



Structural Analysis III 

2.5 Important Definitions 

Load Factor 

The load factor for a possible collapse mechanism i, denoted iλ , is of prime 

importance in plastic analysis: 

 

 Collapse Load for Mechanism 
Working Loadi

iλ =  

 

The working load is the load which the structure is expected to carry in the course of 

its lifetime.  

 

The collapse load factor, Cλ , is the load factor at which the structure will actually fail. 

It is therefore the minimum of the load factors for the  different possible collapse 

mechanisms: 

mn

 

 
m1

minC ii n
λ λ

≤ ≤
=  

 

In our previous analysis the working load was 32 kN and the collapse load for the 

single mechanism was found to be 54 kN. Hence: 

 

 54 1.6875
32Cλ = =  
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Factor of Safety 

This is defined as: 

 

 First yield loadFoS
Working Load

=  

 

The FoS is an elastic analysis measure of the safety of a design. For our example: 

 

 40FoS 1.25
32

= =  

 

Prior to the limit-state approach, codes of practice were based on this definition of 

safety.  
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2.6 Virtual Work in Plastic Analysis 

Introduction 

The easiest way to carry out a plastic analysis is to use virtual work. To do this we 

allow the presumed shape at collapse to be the compatible displacement set, and the 

external loading and internal bending moments to be the equilibrium set. We can then 

equate external and internal virtual work, and solve for the collapse load factor for 

that supposed mechanism. 

 

Remember: 

• Equilibrium set: the internal bending moments at collapse; 

• Compatible set: the virtual collapsed configuration (see below). 

 

Note that in the actual collapse configuration the members will have elastic 

deformation in between the plastic hinges. However, since a virtual displacement 

does not have to be real, only compatible, we will choose to ignore the elastic 

deformations between plastic hinges, and take the members to be straight between 

them. 
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Illustrative Example Cont’d 

Actual Collapse Mechanism 

So for our previous beam, we know that we require two hinges for collapse (one 

more than its degree of redundancy), and we think that the hinges will occur under 

the points of peak moment, A and C. Therefore impose a unit virtual displacement at 

C and relate the corresponding virtual rotations of the hinges using S Rθ= , giving: 

 

 
 

Notice that the collapse load is the working load times the collapse load factor. So: 

 

 ( )( ) ( )( ) ( )(
At At 

32 1 2 4
e I

P P

A C

W W
M M )

δ δ
λ

=

= +
14243 14243

 

 ( )
32 6

6 9
1.69

32

PMλ

λ

=

= =
 

 

since . This result is as found before. 9 kNmPM =
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Other Collapse Mechanisms 

For the collapse mechanism looked at previously, it seemed obvious that the plastic 

hinge in the span should be beneath the load. But why? Using virtual work we can 

examine any possible collapse mechanism. So let’s consider the following collapse 

mechanism and see why the plastic hinge has to be located beneath the load. 

 

Plastic Hinge between A and C: 

Imposing a unit virtual deflection at B, we get the following collapse mechanism: 

 

 
 

And so the virtual work equation becomes: 

 

 ( )( ) ( ) ( )

( )
At At 

32 0.5 1
1 1

2 1
16

1

e I

P P

A D

P

W W
a aM M

a a

a a
M

a

δ δ

λ

λ

=

⎛ ⎞ ⎛= +⎜ ⎟ ⎜− −⎝ ⎠ ⎝

+ −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎞+ ⎟
⎠1442443 1442443

 

 

And since : 9 kNmPM =
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 1 0.5

9 1
16 1a

a
a

λ < ≤

+⎡ ⎤= ⎢ ⎥−⎣ ⎦
 Eq. (1) 

 

And so we see that the collapse load factor for this mechanism depends on the 

position of the plastic hinge in the span. 

 

Plastic Hinge between C and B: 

Again imposing a unit virtual deflection at B we get: 

 

 
 

And so the virtual work equation becomes: 

 

 

( ) ( ) ( )

( )

( )

At At 

0.532 1
1 1 1

2 1
16

1 1

16 1

e I

P P

A D

P

P

W W
a a aM M
a a

a aa M
a a

a M a

a

δ δ

λ

λ

λ

=

⎛ ⎞ ⎛ ⎞ ⎛= +⎜ ⎟ ⎜ ⎟ ⎜− − −⎝ ⎠ ⎝ ⎠ ⎝

+ −⎡ ⎤⎛ ⎞ =⎜ ⎟ ⎢ ⎥− −⎝ ⎠ ⎣ ⎦
= +

⎞+ ⎟
⎠1442443 1442443
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Using : 9 kNmPM =

 

 0.5 0

9 1
16a

a
a

λ < ≤

+⎡ ⎤= ⎢ ⎥⎣ ⎦
 Eq. (2) 

 

And again we see that the load factor depends on the position of the hinge.  

 

Summary 

Plotting how the collapse load factor changes with the position of the hinge, we get: 

1.6875

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance from Support A  (m)

Lo
ad

 F
ac

to
r λ

Eq 1
Eq 2

 

 

 

This tells us that when the load reaches 1.6875 times the working load (i.e. 54 kN) a 

hinge will form underneath the load, at point C, 0.5 m from support A. It also tells us 

that it would take more than 54 kN for a hinge to form at any other place, assuming it 

hadn’t already formed at C. Thus the actual collapse load factor is the smallest of all 

the possible load factors. Hence we can see that in analysing proposed collapse 

mechanisms, we are either correct ( 1.6875Cλ = ) or we are unsafe ( Cλ λ> ). This is 

why plastic analysis is an upperbound method. 
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2.7 Theorems of Plastic Analysis 

Criteria 

In Plastic Analysis to identify the correct load factor, there are three criteria of 

importance: 

 

1. Equilibrium: the internal bending moments must be in equilibrium with the 

external loading. 

 

2. Mechanism: at collapse the structure, or a part of, can deform as a mechanism. 

 

3. Yield: no point in the structure can have a moment greater than the plastic 

moment capacity of the section it is applied to. 

 

Based on these criteria, we have the following theorems. 
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The Upperbound (Unsafe) Theorem 

This can be stated as: 

 

If a bending moment diagram is found which satisfies the conditions of equilibrium 

and mechanism (but not necessarily yield), then the corresponding load factor is 

either greater than or equal to the true load factor at collapse. 

 

This is called the unsafe theorem because for an arbitrarily assumed mechanism the 

load factor is either exactly right (when the yield criterion is met) or is wrong and is 

too large, leading a designer to think that the frame can carry more load than is 

actually possible. 

 

Think of it like this: unless it’s exactly right, it’s dangerous. 

 

Since a plastic analysis will generally meet the equilibrium and mechanism criteria, 

by this theorem a plastic analysis is either right or dangerous. This is why plastic 

analyses are not used as often in practice as one might suppose. 

 

The above theorem can be easily seen to apply to the Illustrative Example. When we 

varied the position of the hinge we found a collapse load factor that was either correct 

( 1.6875Cλ λ= = ) or was too big ( Cλ λ> ). 
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The Lowerbound (Safe) Theorem 

This can be stated as: 

 

If a bending moment diagram is found which satisfies the conditions of equilibrium 

and yield (but not necessarily that of mechanism), then the corresponding load factor 

is either less than or equal to the true load factor at collapse. 

 

This is a safe theorem because the load factor will be less than (or at best equal to) 

the collapse load factor once equilibrium and yield criteria are met leading the 

designer to think that the structure can carry less than or equal to its actual capacity. 

 

Think of it like this: it’s either wrong and safe or right and safe. 

 

Since an elastic analysis will always meet equilibrium and yield conditions, an elastic 

analysis will always be safe. This is the main reason that it is elastic analysis that is 

used, in spite of the significant extra capacity that plastic analysis offers. 
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The Uniqueness Theorem 

Linking the upper- and lower-bound theorems, we have: 

 

If a bending moment distribution can be found which satisfies the three conditions of 

equilibrium, mechanism, and yield, then the corresponding load factor is the true 

load factor at collapse. 

 

So to have identified the correct load factor (and hence collapse mechanism) for a 

structure we need to meet all three of the criteria: 

1. Equilibrium; 

2. Mechanism; 

3. Yield. 

 

The permutations of the three criteria and the three theorems are summarized in the 

following table: 

 

Criterion Upperbound 
(Unsafe) Theorem

Lowerbound 
(Safe) Theorem Unique Theorem

Mechanism  
Equilibrium 

Cλ λ
⎫

≥⎬
⎭

 

Yield  Cλ λ
⎫

≤⎬
⎭

 Cλ λ
⎫
⎪ =⎬
⎪
⎭

 

 

 

The Uniqueness Theorem does not claim that any particular collapse mechanism is 

unique – only that the collapse load factor is unique. Although rare, it is possible for 

more than one collapse mechanism to satisfy the Uniqueness Theorem, but they will 

have the same load factor. 
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Corollaries of the Theorems 

Some other results immediately apparent from the theorems are the following: 

 

1. If the collapse loads are determined for all possible mechanisms, then the actual 

collapse load will be the lowest of these (Upperbound Theorem); 

 

2. The collapse load of a structure cannot be decreased by increasing the strength of 

any part of it (Lowerbound Theorem); 

 

3. The collapse load of a structure cannot be increased by decreasing the strength of 

any part of it (Upperbound Theorem); 

 

4. The collapse load is independent of initial stresses and the order in which the 

plastic hinges form (Uniqueness Theorem); 

 

The first point above is the basis for using virtual work in plastic analysis. However, 

in doing so, it is essential that the designer considers the actual collapse more. To not 

do so would lead to an unsafe design by the Upperbound Theorem. 

 

 

 

 

Dr. C. Caprani 37



Structural Analysis III 

 Illustrative Example Cont’d 

Plastic Hinge Under the Load 

We discovered previously that the collapse load factor was 1.6875 and this occurred 

when the hinge was under the point load. Therefore, this collapse mechanism should 

meet all three criteria of the Uniqueness Theorem: 

 

1. Equilibrium: check on the moment at C say: 

 

 
  about 0 54 0.5 9 0 18 kNB BM A V V= ⋅ − − = ⇒ =∑
 

Thus, from a free-body diagram of CB , 18 0.5 9 kNmCM = ⋅ =  as expected. Thus the 

equilibrium condition is met. 

 

2. Mechanism: Given the number of hinges it is obvious the structure collapses: 

 

 
3 4 2 3 1R C− − = − − = −  

 

3. Yield: Check that there is no moment greater than 9 kNmPM = : 
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And so the yield criterion is met. 

 

Since all three conditions are met we are assured that the have the actual collapse 

load factor by the Uniqueness Theorem. 

 

Other Collapse Modes 

Using the analyses carried out previously for different positions of the plastic hinge, 

we can check these collapse modes against the Uniqueness Theorem. For the case of 

the hinge between A and C: 
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To determine this BMD, we calculate the reaction  by considering the free body 

diagram BCD: 

BV

 

 
( ) about 0 32 0.5 0

1632

P B

P
B

M D M a V a
MV
a a

λ
λλ

= ∴ + − − =

∴ = + −

∑
 

 

Thus the moment under the point load is: 

 

 80.5 16
2

P
C B

MM V
a a

λλ= ⋅ = + −  

 

Substituting in the expression for λ  from Eq. (1) previously: 

 

 8 116
2 16 1

P P
C

M M aM
a a a

⎡ + ⎤⎛ ⎞ ⎛= + −⎜ ⎟ ⎜
⎞
⎟⎢ ⎥−⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 

Which after some algebra becomes: 

 

 
1C P

aM M
a

⎡ ⎤= ⎢ ⎥−⎣ ⎦
 

 

And so because 0.5 , 1.0a≤ ≤ C PM M≥  as shown in the BMD. Only when 0.5a =  

does C PM M= , which is of course the correct solution. 

 

For the case of the hinge being between C and B, we have: 

 

Dr. C. Caprani 40



Structural Analysis III 

 
 

Again, we find the reaction  by considering the free body diagram DB: BV

 

  about 0 0 P
P B B

MM D M V a V
a

= ∴ − = ∴ =∑  

 

Thus the moment under the point load at C is: 

 

 1
2C PM M

a
⎡ ⎤= ⎢ ⎥⎣ ⎦

 

 

And since 0  then 0a≤ ≤ .5 1 2 1a∞ ≤ ≤  and so C PM M≥ . Again only when 0.5a =  

does C PM M= .  
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Summary 

We have seen that for any position of the plastic hinge, other than at exactly C, the 

yield condition is not met. Therefore, in such cases, the Uniqueness Theorem tells us 

that the solution is not the correct one. 

 

Notice that in these examples the mechanism and equilibrium conditions are always 

met. Therefore the Upperbound Theorem tells us that our solutions in such cases are 

either correct (as in when ) or are unsafe (as in 0.5a = Cλ λ> ). 

 

In cases where one of the conditions of the Uniqueness Theorem is not met, we 

assume a different collapse mechanism and try again. 
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2.8 Plastic Design 

When we come to design a structure using plastic methods, it is the load factor that is 

known in advance and it is the plastic moment capacity that is the objective. The 

general virtual work equations for a proposed collapse mechanism i is 

 

 e I

i j ji Pj

W W
P M j

δ δ
λ δ θ

=

⋅ =∑ ∑
 

 

In which j is an individual load and deflection or plastic moment and rotation pair. If 

we take the PM  of each member to be some factor, φ , of a nominal PM , then we 

have: 

 

 i j ji Pj jP M jλ δ φ⋅ = ⋅ θ∑ ∑  

 

Since work is a scalar quantity, and since the sum of work done on both sides is 

positive, we can see that the load factor and plastic moment capacity have a linear 

relationship of slope m for each collapse mechanism i: 

 

 
j j

i P
j ji

i i P

M
P

m M

φ θ
λ

δ

λ

= ⋅

= ⋅

∑
∑  

 

Thus for each collapse mechanism, 1 mk n≤ ≤ , we can plot the load factor against the 

plastic moment capacity. We do so for two cases: 
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1. Load Factor Required – Design Plastic Moment Capacity Known: 

 

 
 

We can see from this graph that for a particular value of the plastic moment capacity, 

, collapse mechanism k gives the lowest load factor and so by the Upperbound 

Theorem is the true collapse mechanism. 

*PM

 

2. Design Load Factor Known – Plastic Moment Capacity Required: 
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From this graph we can see that for a particular value of the load factor, *λ , collapse 

mechanism k gives the highest design plastic moment capacity, PM . However, since 

by the Upperbound Theorem we know collapse mechanism k to be the true collapse 

mechanism, it is therefore the highest value of PM  from each mechanism that is 

required. 

 

Mathematically, using the Upperbound Theorem, the above is summarized as: 

 

 [ ]
min
min

min

C i

i P

P i

m M
M m

λ λ=

= ⋅

=

 

 

Hence when the desired Cλ  is specified: 

 

 

min

max

max

C
P

i

C

i

C j ji
P

j j

M
m

m

P
M

λ

λ

λ δ
φ θ

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

 

 

In summary, if: 

• Design plastic moment capacity is known – design for lowest load factor; 

• Design load factor is known – design for highest plastic moment capacity. 
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2.9 Summary of Important Points 

Number of Hinges Required for Collapse: 

In general we require sufficient hinges to turn the structure into a mechanism, thus: 

 

 
No. of Plastic 

Indet 1
Hinges Required

= +o  

 

However, this does not apply in cases of local partial collapses. 

 

The Three Theorems of Plastic Analysis: 

Criterion Upperbound 
(Unsafe) Theorem

Lowerbound 
(Safe) Theorem Unique Theorem

Mechanism  
Equilibrium 

Cλ λ
⎫

≥⎬
⎭

 

Yield  Cλ λ
⎫

≤⎬
⎭

 Cλ λ
⎫
⎪ =⎬
⎪
⎭

 

 

Collapse Load Factor 

By the Unsafe Theorem, which applies when the virtual work method is used: 

 

 
m1

minC ii n
λ λ

≤ ≤
=  

 

Design Value of Plastic Moment Capacity 

The design value of PM  is the maximum of the design values for PM  from each 

collapse mechanism: 

 

 ,1
max

m
P P ii n

M M
≤ ≤

=  
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3. Beams 

3.1 Example 1 – Fixed-Fixed Beam with Point Load 

For the following beam, find the load at collapse, given that 60 kNmPM = : 

 

 
 

To start the problem, we examine the usual elastic BMD to see where the plastic 

hinges are likely to form: 

 

 
 

We also need to know how many hinges are required. This structure is 3˚ statically 

indeterminate and so we might expect the number of plastic hinges required to be 4. 

However, since one of the indeterminacies is horizontal restraint, removing it would 

not change the bending behaviour of the beam. Thus for a bending collapse only 2 

indeterminacies apply and so it will only take 3 plastic hinges to cause collapse.  

 

So looking at the elastic BMD, we’ll assume a collapse mechanism with the 3 plastic 

hinges at the peak moment locations: A, B, and C.  
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Next, we impose a virtual rotation of θ  to the plastic hinge at A and using the S Rθ=  

rule, relate all other displacements to it, and then apply the virtual work equation: 

 

 
 

 

( ) ( ) ( ) ( )
At At At

6 3

6 8
8
6

e I

P P P

A C

P

P

W W
P M M M

P M

P M

 

3
B

δ δ
θ θ θ θ

θ θ

=

= + + +

=

=

1
θ

23 14243 14243
 

 

Since  the load required for collapse is 60 kNmPM = 80 kNP =  and so the collapse 

BMD for this mechanism is: 

 

 
 

We need to check that this is the correct solution using the Uniqueness Theorem: 
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1. Equilibrium: 

We’ll check that the height of the free BMD is 120 kNm as per the collapse BMD: 

 

 
 

  about 0 80 6 8 0 60 kNB BM A V V= ∴ ⋅ − = ∴ =∑
 

Thus, using a free body diagram of CB: 

 

   about 0 2 0 120 kNmC B CM C M V M= ∴ − = ∴ =∑
 

And so the applied load is in equilibrium with the free BMD of the collapse BMD. 

 

2. Mechanism: 

From the proposed collapse mechanism it is apparent that the beam is a mechanism. 

 

3. Yield: 

From the collapse BMD it can be seen that nowhere is PM  exceeded. 

 

Thus the solution meets the three conditions and so, by the Uniqueness Theorem, is 

the correct solution. 
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3.2 Example 2 – Propped Cantilever with Two Point Loads 

For the following beam, for a load factor of 2.0, find the required plastic moment 

capacity: 

 

 
 

Allowing for the load factor, we need to design the beam for the following loads: 

 

 
 

Once again we try to picture possible failure mechanisms. Since maximum moments 

occur underneath point loads, there are two real possibilities: 

 

  
 

Mechanism 1: Plastic Hinge at C  Mechanism 2: Plastic Hinge at D 
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Therefore, we analyse both and apply the Upperbound Theorem to find the design 

plastic moment capacity. 

 

Mechanism 1: Plastic Hinge at C: 

 

 
 

 

( ) ( ) ( )
At 

At 

150 2 60
2

5360
2
144 kNm

e I

P P

A
C

P

P

W W

M M

M

M

δ δ
θθ θ θ θ

θ θ

=

⎛ ⎞+ = + +⎜ ⎟
⎝ ⎠

=

=

123
14243  

 

Mechanism 2: Plastic Hinge at D: 
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( ) ( ) ( ) (

At At 

150 2 60 4 2

540 4
135 kNm

e I

P P

A D

P

P

W W
M M

M
M

)
δ δ

θ θ θ θ

θ θ

θ
=

+ = + +

=
=

123 14243  

 

So by the application of the Upperbound theorem for the design plastic capacity, we 

choose  as the design moment and recognize Mechanism 1 to be the 

correct failure mechanism. We check this by the Uniqueness Theorem: 

144 kNmPM =

 

1. Equilibrium: 

Using the BMD at collapse, we’ll check that the height of the free BMD is that of the 

equivalent simply-supported beam. Firstly the collapse BMD from Mechanism 1 is: 

 

 
 

Hence, the total heights of the free BMD are: 

 

 
96 144 240 kNm
48 132 180 kNm

C

D

M
M

= + =
= + =

 

 

Checking these using a simply-supported beam analysis: 
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 about 0 150 2 60 4 6 0 90 kN

0 150 60 90 0 120 kN
B B

y A

M A V V
F V

= ∴ ⋅ + ⋅ − = ∴ =

= ∴ + − − = ∴ =
∑
∑ AV

 

Thus, using appropriate free body diagrams of AC and DB: 

 

 
120 2 240 kNm
90 2 180 kNm

C

D

M
M

= ⋅ =
= ⋅ =

 

 

And so the applied load is in equilibrium with the free BMD of the collapse BMD. 

 

2. Mechanism: 

From the proposed collapse mechanism it is apparent that the beam is a mechanism. 

Also, since it is a propped cantilever and thus one degree indeterminate, we require 

two plastic hinges for collapse, and these we have. 

 

3. Yield: 

From the collapse BMD it can be seen that nowhere is the design  

exceeded. 

144 kNmPM =
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Thus by the Uniqueness Theorem we have the correct solution. 

 

Lastly, we’ll examine why the Mechanism 2 collapse is not the correct solution. 

Since the virtual work method provides an upperbound, then, by the Uniqueness 

Theorem, it must not be the correct solution because it must violate the yield 

condition. 

 

Using the collapse Mechanism 2 to determine reactions, we can draw the following 

BMD for collapse Mechanism 2: 

 

 
 

From this it is apparent that Mechanism 2 is not the unique solution, and so the 

design plastic moment capacity must be 144 kNm as implied previously from the 

Upperbound Theorem. 
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3.3 Example 3 – Propped Cantilever under UDL 

For the general case of a propped cantilever, find the locations of the plastic hinges at 

collapse, and express the load at collapse in terms of the plastic moment capacity. 

 

 
 

When considering UDLs, it is not readily apparent where the plastic hinge should be 

located in the span. For this case of a propped cantilever we require 2 hinges, one of 

which will occur at A, as should be obvious. However, we need to keep the location 

of the span hinge variable at say, aL, from A: 

 

 
 

Using S Rθ= , we find the rotation at B: 

 

 ( )1 BaL L aθ θ= −  
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And so: 

 

 
( )1B

a
a

θ θ= ⋅
−

 

 

Thus, noting that the external work done by a UDL is the average distance it moves, 

we have: 

 

 

( ) ( )
At 

At 

2

2

2

2 1

2
2 1

2
2 1

2 2
1

e I

P P

A
C

P

P

P

W W
aL awL M M

a

waL aM
a

waL aM
a

M a
waL a

δ δ
θλ θ θ

λ θ θ

λ

λ

θ

=

⎛ ⎞ ⎛= + + ⋅⎜ ⎟ ⎜
⎞
⎟−⎝ ⎠ ⎝

⎛ ⎞= +⎜ ⎟−⎝ ⎠
−⎛ ⎞= ⎜ ⎟−⎝ ⎠
−⎛ ⎞= ⎜ ⎟−⎝ ⎠

123 ⎠144424443

 

 

If we introduce a non-dimensional quantity, 2
PK M wL≡ , we have: 

 

 2 2
1

aK
a a

λ −⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠
 

 

Thus the collapse load factor is a function of the position of the hinge, a, as expected. 

Also, we can plot the function Kλ  against a to visualize where the minimum might 

occur: 
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To determine the critical collapse load factor, suing the Upperbound Theorem, we 

look for the minimum load factor using: 

 

 0d
da
λ
=  

 

To do this, we’ll expand the fraction: 

 

 
2

2 2 4 2
1

a aK K
a a a a

λ − −⎛ ⎞= ⋅ = ⋅⎜ ⎟− −⎝ ⎠
 

 

Using the quotient rule for derivates: 

 

 
( )( ) ( )( )

( )

2

2

22

2 4 2 1 2
0

du dvv udy dx dx
dx v

a a a ad
da a a
λ

−
=

− − − − −
= =

−
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Thus multiplying across by (  and simplifying gives: )

0

22a a−

 

 22 8 4a a− + − =  

 

Thus: 

 

 
( )( )

( )

28 8 4 2 4
2 2

2 2

a
− ± − − −

=
−

= ±

 

 

Since we know , then: 0 a≤ ≤1

 

 2 2 0.586a = − =  

 

At this value for a, the collapse load factor is: 

 

 
2

2

2 2 0586
0.586 1 0.586

11.656

P
C

P

M
wL

M
wL

λ −⎛ ⎞= ⋅ ⎜ ⎟−⎝ ⎠

=
 

 

These values are shown in the graph previously. The collapse BMD is: 
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The propped cantilever is a good structure to illustrate the use of the Lowerbound 

Theorem. Consider the standard elastic BMD for this structure which meets the 

equilibrium condition: 

 

 

 
2 29

8 128A max

wL wLM M= =  

 

If we increase the load by a load factor λ  so that A PM M= , and since max AM M<  we 

meet the yield condition, then we have: 

 

 

2

2 2

8

8 11.656

P

P P
C

wLM

M M
wL wL

λ

λ λ

=

= < =
 

 

 
 

By meeting the equilibrium and yield conditions, but not the mechanism condition, 

we have a lowerbound on the critical load factor without doing the virtual work 

analysis. This is one of the main reasons elastic analyses are mostly used in practice. 
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3.4 Problems 

1. For the following prismatic beam of 30 kNmPM = , find the load factor at 

collapse. (Ans. 1.5) 

 

 
 

2. For the following prismatic beam of 30 kNmPM = , find the load factor at 

collapse. (Ans. 1.33) 

 

 
 

3. For the following prismatic beam of 86 kNmPM = , find the load factor at 

collapse. (Ans. 1.27) 
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4. Frames 

4.1 Collapse Mechanisms 

In frames, the basic mechanisms of collapse are: 

 

Beam-type collapse: 

 

 
 

Sway Collapse: 

 

 
 

Combination Collapse: 
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Combination of Mechanisms 

One of the most powerful tools in plastic analysis is Combination of Mechanisms. 

This allows us to work out the virtual work equations for the beam and sway 

collapses separately and then combine them to find the collapse load factor for a 

combination collapse mechanism. 

 

Location of Plastic Hinge at Joints 

In frames where members of different capacities meet at joints, it is the weaker 

member that develops the plastic hinge. So, for example: 

 

 
 

The plastic hinge occurs in the column and not in the beam section since the column 

section is weaker.  

 

This is important when calculating the external virtual work done. 
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4.2 Example 4 – Frame 

Find the collapse load in terms of the plastic moment capacity: 

 

 
 

Using the idea of Combination of Mechanisms, we will analyse the beam and sway 

mechanisms separately, and then combine them in various ways to achieve a solution. 
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Beam Collapse Mechanism: 

 

 
Notice that, as previously mentioned, we must take the plastic hinge at joint C to be 

in the column which has the smaller PM . Applying the virtual work equation: 

 

 

( ) ( ) ( )
{

( )
At At At At 

At At

4 13 2 2 2
3 3

6 5
5
6

e I

P P P

GE F B
E C

P

P

W W

W W W M M M

W M

W M

 

δ δ

θ θ θ θ θ

θ θ

θ

=

⎛ ⎞ ⎛+ + = + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

=

=

123 123 14243
⎞
⎟
⎠14243 14243  
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Sway Collapse Mechanism: 

 

 
 

Again notice how careful we are of the hinge location at joint C. 

 

 

( ) ( )
At At 

At 

39 2
2

9 3.5
7

18

e I

P P

B B
C

P

P

W W

W M M

W M

W M

δ δ

θ θ θ

θ θ

=

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

=

=

123 14243
14243  
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Combined Collapse Mechanism 

To arrive at a solution, we want to try to minimize the collapse load value. Examining 

the previous equations, this means that we should try to maximize the external work 

done and minimize the internal work done. So: 

• To maximize the external work done we need to make every load move 

through some displacement, unlike the sway mechanism; 

• To minimize the internal work done we try to remove a hinge, whilst 

maintaining a mechanism. 

 

Based on the above try the following: 

 

 
 

Instead of using virtual work, we can combine the equations already found: 

• External virtual work: Since all forces move through displacements: 

 

 { {
Beam Sway

6 9 15eW W W Wδ θ θ θ= + =  

 

• Internal virtual work: we can add but we must remove the work done by the 

hinge at B for both the beam and sway mechanisms: 
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 { { {
Beam Hinge  - Beam Hinge  - SwaySway

5 3.5 2 2 4.5I P P P P

B B

W M M M M M Pδ θ θ θ θ= + − − =
14243

θ  

 

Thus we have: 

 

 15 4.5
3

10

e I

P

P

W W
W M

W M

δ δ
θ θ
=
=

=

 

 

Since this is lower than either of the previous mechanisms, we think this is the 

solution, and so check against the three conditions of the Uniqueness Theorem. 

 

To prove that the combination of mechanisms works, we do the virtual work analysis: 

 

 
 

 

( ) ( ) ( ) ( )
{

At At At At 
At At 

4 39 3 2 2
3 2

15 4.5
3

10

e I

P P

GB E F
E C

P

P

W W

W W W W M M

W M

W M

1
3

δ δ

θ θ θ θ θ θ

θ θ

θ

=

⎛ ⎞ ⎛+ + + = + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

=

=

123 123 123
⎞
⎟
⎠14243 1442443  
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Check for the three conditions, recognizing that 3.33
0.3P

WM W= =  

 

1. Equilibrium: 

We start by determining the reactions: 

 

 
about 0 6 0

3.33 0.55
6 6

D P

P
D

M C H M
M WH W

= ∴ − =

∴ = = =

∑
 

 

 0 0.55 0.45x AF H W W W= ∴ = − =∑  

 

For the whole frame: 

 

  about 0 12 3 6 9 6 3 0 0.89A A AM D V H W W W W V= ∴ + + − − − = ∴ =∑ W  

 

Thus the moment at E, from a free-body diagram of ABE, is: 

 

  about 0 3 9 0 6.71A A E EM E V H M M= ∴ + − = ∴ =∑ W  

 

Since there is a plastic hinge at E of value ( )2 2 3.33 6.67PM W W= ⋅ =  we have 

equilibrium. 

 

2. Mechanism: 

The frame is obviously a mechanism since 3 4 2 3 1R C− − = − − = − . 

 

3. Yield: 

To verify yield we draw the collapse BMD from the reactions: 
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From the diagram we see that there are no moments greater than 2 6.67PM W=  in 

members AB and BC, and no moments greater than 3.33PM W=  in member CD. 
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4.3 Example 5 – Frame, Summer 1997 

For the following frame, find the plastic moment capacity required for collapse under 

the loads given. 

 

 
 

The structure is 1 degree indeterminate so the number of plastic hinges required is 2. 

We propose the following collapse mechanism: 

 

Dr. C. Caprani 70

 



Structural Analysis III 

Also, looking closely at the relevant joints: 

 

 
 

Thus we have: 

 

 
( ) ( ) ( )

{
At At At 

At At 

3 3200 3 100 50 2
2 2

650 4.5
144.44 kNm

e I

P P

GJ F
J C

P

P

W W

M M

M
M

δ δ
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Notice that the 50 kN point load at G does negative external work since it moves 

against its direction of action.  

 

Note also that there are other mechanisms that could be tried, some of which are 

unreasonable. 

 

Next we check this solution to see if it is unique: 
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1. Equilibrium: 

For the whole frame, taking moments about D gives: 

 

  50 1 200 6 100 8 9 0 227.8 kNA AV V⋅ + ⋅ + ⋅ − = ∴ =

 

Using a free body diagram of ABJ, and taking moments about the plastic hinge at J: 

 

  2 144.4 100 2 3 227.8 3 0 64.9 kNA AH H⋅ + ⋅ − ⋅ − = ∴ =

 

 

 

 

 

 

 

 

 

 

 

So for the whole frame: 

 

  0 0 64.9 kNx A D DF H H H= ∴ − = ∴ =∑
 

Thus for the free body diagram of CD, taking moments about C: 

 

  50 1 3 0 144.7 kNmC D CM H M− ⋅ − = ∴ =
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Since this is the value of PM  we have a plastic hinge at C as expected. Thus the loads 

are in equilibrium with the collapse mechanism. 

 

2. Mechanism: 

Since  we have a mechanism. 3 4 2 3R C− − = − − = −1

 

3. Yield: 

Drawing the bending moment diagram at collapse shows that no section has a 

moment greater than its moment capacity of either PM  or 2 PM : 
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4.4 Example 6 – Frame, Sumer 2000 

For the following frame, find the collapse load factor when 120 kNmPM = : 

 

 
 

To be done in class. 
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5. Past Exam Questions 

5.1 Summer 1999 

The following rigid-jointed frame is loaded with working loads as shown: 

1. Find the value of the collapse load factor when 120 kNmPM = ; 

2. Show that your solution is the unique solution; 

3. Sketch the bending moment diagram at collapse, showing all important values. 

 

 
 

(Ans. 2.0Cλ = ) 

Dr. C. Caprani 75



Structural Analysis III 

5.2 Summer 2001 

The following rigid-jointed frame is loaded with working loads as shown: 

1. Find the value of the collapse load factor when 120 kNmPM = ; 

2. Show that your solution is the unique solution; 

3. Sketch the bending moment diagram at collapse, showing all important values. 

 

 
 

(Ans. 1.89Cλ = ) 
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5.3 Summer 2004 

The following rigid-jointed frame is loaded with working loads as shown: 

1. Find the value of the collapse load factor when 160 kNmPM = ; 

2. Show that your solution is the unique solution; 

3. Sketch the bending moment diagram at collapse, showing all important values. 

 

 
 

(Ans. 2.13Cλ = ) 
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5.4 Summer 2005 

The following rigid-jointed frame is loaded with working loads as shown: 

1. Find the value of the collapse load factor when 200 kNmPM = ; 

2. Show that your solution is the unique solution; 

3. Sketch the bending moment diagram at collapse, showing all important values. 

 

 
 

(Ans. 1.33Cλ = ) 
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5.5 Summer 2007 

The following rigid-jointed frame is loaded so that the force system shown is just 

sufficient to cause collapse in the main frame ABCD: 

1. Find the value of PM  given that the relative plastic moment capacities are as 

shown in the figure; 

2. Show that your solution is the unique solution; 

3. Sketch the bending moment diagram at collapse, showing all important values. 
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(Ans. ) 175.8 kNmPM =
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5.6 Semester 2 2008 

For the rigid-jointed frame of Fig. Q3(a), loaded with the working loads shown, do 

the following: 

1. Find the load factor which causes collapse of the frame, given that ; 80 kNmPM =

2. Show that your solution is the unique solution; 

3. Sketch the bending moment diagram at collapse, showing all important values. 
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(Ans. 2.0Cλ = ) 
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